Mycoplasma capricolum ssp. capripneumoniae

(Leach et al., 1993)

Etymology

Gr. n. mukes – fungus, Gr. neut. n. plasma – anything formed, N.L. neut. n. Mycoplasma – fungus form; L. n. caper – a male goat, N.L. suff. -colum – dwelling, N.L. neut. adj. capricolum – dwelling in a male goat, L. n. capra – a goat, Gr. n. pneumonia – pneumonia, N.L. gen. n. capripneumoniae – of pneumonia of a goat

Taxonomy

MycoplasmatalesMycoplasmataceaeMycoplasmaMycoplasma capricolum ssp. capripneumoniae (Mycoides cluster), closely related to Mycoplasma capricolum ssp. capricolum, Mycoplasma mycoides, and Mycoplasma leachii (16S rRNA gene sequence similarities – 99.59, 99.31 and 99.52%, respectively) (Fig. 1)

Type strain

F38T (goat, Kenya, 1976), (Fig. 2, 16S rRNA gene sequence)

Genomes

25 completed (F38T, JF6037 (mutant), JF6034 (mutant), JF6042 (mutant), Yatta/B  – all Kenya; M1601, 87001, 2 x zly1309F – all China; 9231-Abomsa, 2/90, Erer – all Ethiopia; ILRI181 – origin undefined; 04012 – Qatar; C5, 8991 – both Oman; AMRC-C758, 05021 – both Sudan; 033C1 – Turkey; 14020, Bagamoyo – both Tanzania; 438LP – Chad; 95043 – Niger; 12002 – Tajikistan; C550/1 – United Arab Emirates); 1 draft genome (NCBI Genome deposit per 11/05/2024)

Cell morphology

spherical – coccoid

Colony morphology

small colonies with variable fried egg morphology (Fig. 3)

Metabolism

some strains only oxidize organic acids (pyruvate), others ferment in addition glucose; assimilation of glycerol; non-arginine-hydrolyzing, non-urea-hydrolyzing

Host

mainly goat, occasionally causing disease in sheep (following close contact to infected goats) and in wild ungulates (captive or free-living wild goats, ibex, mouflon, gerenuk, gazelles, and deer)

Habitat

respiratory tract

Disease(s)

Contagious Caprine Pleuropneumonia (CCPP), pneumonia (hepatization) with pleurisy (adhesion, accumulation of pleural fluid)

Pathogenicity

pathogenicity factors largely elusive, known are capsular polysaccharides contributing to adhesion and enhancing resistance to phagocytosis, and production of hydrogen peroxide as a by-product of glycerol assimilation

Epidemiology

Africa excluding southern Africa, Asia (Near and Middle East, India, Nepal), and Turkey; horizontal transmission by aerosol, milk, semen; vertical transmission from dam to fetus/neonate; commonly introduced into herds by apparently healthy carrier animals; climatic changes, overcrowding, commingling and translocation may trigger infection    

Diagnosis

PCR; cultivation (some strains highly fastidious) and species identification by MALDI-ToF MS, serology or genetically; detection of antibodies using immunoassays  

Fig. 1. Maximum likelihood tree showing the phylogenetic position of Mycoplasma capricolum ssp. capripneumoniae F38T within the Mycoides cluster of Mycoplasmataceae based on 16S rRNA gene sequences. The sequence of Mycoplasma synoviae WVU 1853T was used as out-group (Synoviae cluster). Numbers at nodes represent bootstrap confidence values (1000 replications). Only values > 80% are shown. Bar, number of substitutions per nucleotide position. Credits: Joachim Spergser (Vetmeduni Vienna)

>Mycoplasma capricolum ssp. capripneumoniae PG2T
CTGGCGGCATGCCTAATACATGCAAGTCGAACGGGGGTGCTTGCACCTCAGTGGCGAACGGGTGAGTAACACGTATCTAACCTACCTTATAGCGGGGGATAACTTTTGGAAACGAAAGATAATACCGCATGTAGATCTTATTATCACATGAGAAAAGATCAAAAGAACCGTTTGGTTCACTATGAGATGGGGATGCGGCGTATTAGCTAGTAGGTGAGATAATAGCCCACCTAGGCGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATTTTTCACAATGGACGAAAGTCTGATGAAGCAATGCCGCGTGAGTGCTGACGGCCTTCGGGTTGTAAAGCTCTGTTGTAAGGGAAGAAAAAATAGAGTAGGAAATGACTTTATCTTGACAGTACCTTACCAGAAAGCCACGGCTAACTATGTGCCAGCAGCCGCGGTAATACATAGGTGGCAAGCGTTATCCGGATTTATTGGGCGTATAGGGTGCGTAGGCGGTTTTGCAAGTTTGAGGTTAAAGTCCGGAGCTCAACTCCGGTTCGCCTTGAAAACTGTTTTACTAGAATGCAAGAGAGGTAAGCGGAATTCCATGTGTAGCGGTGAAATGCGTAGATATATGGAAGAACACCTGTGGCGAAAGCGGCTTACTGGCTTGTTATTGACGCTGAGGCACGAAAGCGTGGGGAGCAAATAGGATTAGATACCCTAGTAGTCCACGCCGTAAACGATGAGTACTAAGTGTTGGGGTAACTCAGCGCTGCAGCTAACGCATTAAGTACTCCGCCTGAGTAGTATGCTCGCAAGAGTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGTGGTGGAGCATGTGGTTTAATTCGAAGCAACACGAAGAACCTTACCAGGGCTTGACATCCAGTGCAAAGCTATAGAGATATAGTAGAGGTTAACATTGAGACAGGTGGTGCATGGTTGTCGTCAGTTCGTGCCGTAAGGTGTTGGGTTAAGTCCCGCAACGAACGCAACCCTTGTCGTTAGTTACTAACATTAAGTTGAGAACTCTAACGAGACTGCTAGTGTAAGTTAGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGTCCTGGGCTACACACGTGCTACAATGGCTGGTACAAAGAGTTGCAATCCTGTGAAGGGGAGCTAATCTCAAAAAACCAGTCTCAGTTCGGATTGAAGTCTGCAACTCGACTTCATGAAGCCGGAATCACTAGTAATCGCGAATCAGCTATGTCGCGGTGAATACGTTCTCGGGTCTTGTACACACCGCCCGTCACACCATGAGAGTTTGTAATACCAGAAGTAGGTAGCTTAACCATTTGGAGAGCGCTTCCCAAGGTAGGACTAGCGATTGGGGTGAAGTCGTAACAAGGT
Fig. 2. 16S rRNA gene sequence of Mycoplasma capricolum ssp. capripneumoniae PG2T (Accession number: NR_118795)

Fig. 3. Mycoplasma capricolum ssp. capripneumoniae F38T on modified Hayflick’s agar supplemented with sodium pyruvate after 7 days of incubation exhibiting small and dense colonies without fried egg morphology. Bar, 1 mm. Credits: Joachim Spergser (Vetmeduni Vienna)

Species assigned by: Leach, R.H., Erno, H., MacOwan, K.J. 1993. Proposal for designation of F38-type caprine mycoplasmas as Mycoplasma capricolum subsp. capripneumoniae subsp. nov. and consequent obligatory relegation of strains currently classified as M. capricolum (Tully, Barile, Edward, Theodore, and Erno 1974) to an additional new subspecies, M. capricolum subsp. capricolum subsp. nov. Int. J. Syst. Bacteriol. 43: 603-605.

Nach oben scrollen